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The equations of the propagation of weak non-linear waves are obtained by a detailed analysis of the 

gradient-consistent micropolar model of a granular continuous medium. The high-frequency mode of 

oscillation is associated with ultrasonic waves, and the low-frequency mode is associated with the usual 

seismic waves in rocks. The evolution equations that include the case of long-wave-short-wave 

resonance are obtained by an asymptotic consideration. This resonance corresponds to the caSe of the 

generation of ultrasound (noise) by travelling seismic waves. 

THE PROPAGATION of waves in rocks having a microstructure can be investigated using a well- 
known generalization of the classical theory of elasticity, namely, the so-called micropolar 
theory [l]. To explain the experimental fact [2] of the generation of ultrasonic oscillations by 
ordinary seismic waves or of seismic noise by low-frequency waves the gradient-consistent 
formulation of the micropolar theory was used in [3]. It essentially employs the condition that 
the free energy of the medium must depend on the spatial derivatives of the displacement by a 
unit of greater order than the derivatives of the angle of rotation of a grain. The micropolar 
model was also used in [4] to analyse non-linear wave processes, but the problem of the 
generation of high-frequency oscillations by travelling waves was not considered. 

1. INITIAL FORMULATION OF THE MATHEMATICAL MODEL 

The required variables in the equations of the theory are the coordinates of a particle of the 
medium x, and the orthogonal matrix xu, describing the rotation of this particle as a solid. 
These variables are functions of the Lagrange coordinates and time 

xk =Xk(xm,t), xkl =x~~(x~,~), k 1, m=1,2,3 

For small strains the displacements u, and the vector of the angle of rotation (Pi are more 
convenient; these are connected with x, and xk, by the following relations 

Xk = x, + Uk 

(l-1) 
Xkl =6k,+~kl+~%(Psl+-.. (~=e’P~(Pk,=-Eklm(Pm) 
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where E, is an alternating tensor, i.e. up to second-order terms 

The equations of motion of a micropolar medium have the form (the balance of momentum 
and moment of momentum) 

(1.3) 

where trk and m, are the stress and moment stress tensors. We will close system (1.3) [3] using 
the following constitutive relations 

aa aa 
- -+.KxkL +2ac,,“l,Kxk,LM - 

-(xk Kxi Lx, M + xl KXm,LXk,M - Xm,KXk.LXI,M) 
acKm ’ ’ ’ ’ I ,m 

aa 
mlk = z ERMLxl,k%R 

(1.4) 

(1.5) 

These equations completely define the volume density of free energy a, which depends only 
on the components of the tensors 

GKL = x,,KxsL - &KL, cKLM = x,,Kx,JM~ rKL44 = hf.KXsL (1.6) 

The assumption that @ is a function of only the quantities (1.6) and is the above-mentioned 
condition of gradient-consistency when the first derivatives of the angle of rotation and the 
second derivatives of the displacements, respectively, come into play. For small deformations 
the quantities (1.6) in the principal order are linear in Us and (Pi. This can be seen from the 
following expressions for these quantities in terms of U, and (pk 

GKL = UL,K -EKL~% +%(PK(PL -ti6KL%% +EhUs,K(Pm+~*~ 

cKL44 = uK,LM + us,K”s,LM+~.. (1.7) 

rK~ =Ehfh(Pm,K +)/2(PLv,+f,K -%(PMM(PL.K+... 

in which we have taken into account terms of the expansions up to the second power, which will 
be sufficient later. 

When investigating the model of an isotropic micropolar medium in the linear approxi- 
mation, the free energy density is taken in a uniform quadratic form of the components of the 
tensors (1.6), invariant under a total orthogonal group. Its general form is derived in [3]. In 
order to be able to investigate various non-linear phenomena which occur in a medium with a 
microstructure (such as, for example, the transformation of low-frequency seismic waves into 
high-frequency waves in the ultrasonic band, connected with the rotational vibrations of the 
grains or the generation of shear waves by longitudinal waves), we must also take cubic terms 
into account in a. The general form of the invariant uniform cubic form is constructed by a 
method similar to that described in [3] by exhaustive search for all different methods of 
convolution in the scalar of the tensor products GGG, GCG, Gl’r and G CI’, taking into 
account the symmetry C,, and the antisymmetry I’,,, with respect to the indices L and M. 
Only for these products (the sum of the powers of the trivalent tensors C and r in them are 
even) does one obtain invariance for reflections. Hence, we will consider a model of the medium 
which is defined by the following expression for the free energy density 
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@=Q,(G,C,I’)+Q,(G,C,r) 

@2 = a,GKKG, +~,GKLGKL+...+~,~CKLL~MMK + u14cKLt4rLKM 

@3 = %GKKG,%i + a,6G~~G~LG~~ +...+a74GKLCMNNr~KL + a75GKLCMh4NrNKL 

@l,**-, a-, are the material constants). 
It should be noted that the set of quadratic invariants constructed by the method of all- 

possible convolutions is complete and linearly independent. At the same time, the system of 
cubic invariants occurring in a3, being complete, is not linearly independent. There are linear 
relations between the invariants inside types GCC, GCT and GIT. They can be obtained by 
alternating an eighth-rank tensor, by convolution of which one obtains an invariant, with 
respect to four indices, arranged in pairs, defining the convolution, for example, from the left, 
and then carrying out convolution using the same scheme, since alternation over four indices 
gives an identical zero in three-dimensional space. Hence, the relation between the specific 
micropolar medium and the set of constants ai is not one-to-one: different sets of constants may 
define one and the same medium. In other words, the number of material constants in as can 
be reduced. 

However, it is not necessary to carry out this procedure in this paper, since to obtain the non- 
linear wave effects investigated in the second part of this paper it is sufficient to assume that the 
combinations of material constants (a small part of them) occurring in the one-dimensional 
reduction of the general equations are non-zero. 

As a result of the closure of the system of equations (1.3) using (1.4) and (1.5), where GKL, 

&\$.7), 
x,, x~, are expressed in terms of the field variables u, and (Pi by means of (l.l), 

we obtain the following equations of motion, neglecting terms higher than the 
second power 

Piik = aekct@f3.a + blUk,aa + b2ucmk + b3uk,,pf3 + b4Ua,af.%Pk +b+kcz~~a.~w + Qi' (1.8) 

(I-9) 

The coefficients of linear terms can be expressed in terms of the material constants a, as 
follows: 

a=2(a,-a2), b, =2a,, b2=2(a2+a3) 

b3 = -a4 - 2a6 - 2a7 + 2a,, b4 = -a4 -2a, - 4a8 

b5 = aI2 +a13, c, = 2(a, + 2u,() + a,, + 2a,2 + q4) 

(1.10) 

c2 =-2(a, +a,, +a,,), c3 = q3 -q4 +2a4 -4~2, 

Comparison with the corresponding formulae from [3] shows certain differences, probably 
connected with the inaccuracy in the algebraic calculations allowed in [3]. The difference 
essentially consists of the fact that in [3] the coefficients b, and c, are identical, whereas 
according to (1.10) they are independent of one another. 

As regards the sets of quadratic terms QI and QT, it is a difficult procedure to write them 
down and to give explicit expressions for the coefficients in terms of the constants a,, and is 
outside the scope of this paper. It is possible best to use computer techniques to obtain them. For 
our investigation it is sufficient to present some general ideas on the structure of Q; and Qz 
which enables us to isolate the non-linear terms on the right-hand sides of Eqs (1.8) and (1.9), 
which are important for the effects in question when the solution has the form of a plane wave. 
An analysis of the sets of quadratic terms in (1.8) and (1.9) shows that Q; and Qz are linear 
combinations of expressions of the form 
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where the operators D1 and D, are the products of several differentiation operators a/ax,, 
where some of the a may be both identical with one another and with m or n. 

The order of the operator Di that acts on u,,, can vary from 1 to 4, while the order of the 
operator acting on cp,, can vary from 0 to 3. As an example, in Qi there are terms 

(1.12) 

etc., where c, c’ and c” are certain coefficients which can be expressed linearly in terms of the 
material constants a, (like (1.10)). 

The most important characteristic of the quadratic term of the form (1.11) is the order of each 
of the multiplied derivatives. Corresponding to this, in view of the large number of non-linear 
terms in (1.8) and (1.9) it is useful to classify the terms in Q; and Qz according to this criterion, 
developing them in types and denoting each type by a symbol of the form u’u”, u’u”‘, u’#‘, etc., 
where the number of primes is equal to the order of the differential operators D1 and D, in 
(1.11). The terms (1.12) given above as an example belong to types u’u”, ~‘9’ and (p<p”‘, 
respectively. 

Although the total number of terms of the form (1.11) in (1.8) and (1.9) exceeds a hundred, 
the number of different types is much less and can be easily calculated. For this purpose we will 
formulate a rule which can easily be checked directly by considering in succession all the 
operations carried out when closing the system of equations (1.3) using (1.4) and (1.5) and 
taking (l.l), (1.2) and (1.7) into account. 

We will introduce the integer Zi which characterizes the operation Di in (1.11) as follows: li is 
equal to the order of Di, if Di acts on cp,, and 1, is one less than the order of Di, if 0, acts on 
u,,,. We have already pointed out above the limitation on the order of Di which we can now 
express as 

OSliS3, i=1,2 (1.13) 

The whole variety of types of terms present in Q; and Qz is determined by the following 
conditions: (a) 0 s 1, + 1, s 3, and (b) for any term from QL the sum I1 + Z, is odd, and for any 
term from Q: it is even. 

Note that condition (b) is a consequence of the symmetry of the model of the micropolar 
medium being investigated for reflections. 

Going by these conditions, i.e. by the fact that in QI the sum 4 + 1, is equal to 1 or 3, while in 
Qz the sum 1, + 1, is equal to 0 or 2, and taking (1.3) into account, we can indicate all types of 
quadratic terms in (1.8) and (1.9), namely 

the types of terms in Qi 

u,u,t, uIuI)f’( u”u”‘; u’(p’, u’cp ,,, I, I, , u”(p, u cp 
p(f, uu~*(p; cpcp’, qp”‘, @p” (1.14) 

and the types of terms in Q,” are 

U,u,, UIU,I,, u*‘u”; u’(p, u’(p”, u”#, u”‘(l); VP, 
w ‘!, cp’cp’ (1.15) 

It should be noted that there are, in fact, no terms of the type (p(p since they can only have the 
form E~~~B(P~(P,, or E~~(P~(P~, which is obviously equal to zero. 

It can also be seen that the linear terms are subject to rules similar to (a) and (b), only 
simpler. They are characterized by a single operator D, for which 1 satisfies the conditions: 
0 c 1 s 3; I is odd in the first of equations (1.8) and (1.9) and even in the second of these. 

Note that all possible terms in Q; and Qz with arbitrary coefficients cj can be calculated by 
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forming tensor products from the partial derivatives of u, and qr belonging to the above- 
mentioned types 

u aJPp.qrr UrZ.~Up,qnt~~~*; %@a.B%Jl 

EUv~Q,B’Pp,Bn,...; . . . . . . . . . . . Eu~‘P~,-~‘P~,~ (1.16) 

(Em is supplemented with a calculation such that the overall number of indices is odd), and by 
inspecting all non-equivalent methods of allocating one of the indices of value k and 
convoluting with respect to the remaining, pairwise identical, indices. The identically zero terms, 
like the above type (p(p, are naturally ignored. It is still a difficult problem to determine how the 
coefficients cj depend on the constants a,, which we mentioned above. We cannot simply 
calculate the different coefficients for all possible terms of the type (1.16) (i.e. assume these 
coefficients to be independent), since even in the linear parts of Eqs. (1.8) and (1.9) a relation- 
ship between them is observed: the coefficients of E~cP~,~, E~%,~ and (Pi are proportional. 
Moreover, the presence of such relationships between the coefficients of the quadratic terms is 
unavoidable, since the number of different forms of these terms obtained by the method 
described above exceeds the number of constants a,. 

2. NON-LINEAR LONGITUDINAL WAVES IN A MICROPOLAR MEDIUM 

We will consider one-dimensional non-linear waves in a micropolar medium described by the 
general equations. For a wave propagating in the direction n 

ui(X~,t)=ui(X,r), Vj(X~,f)=~i(x,t) 

X=XanOl, a,i=1,2,3 

The spatial derivatives here are converted by the following rule 

(2.1) 

& = n,af lax= n,f’ (2.2) 

We will direct the X axis along the direction of propagation of the wave, i.e. n = (1, 0,O). 
The non-linear equations (1.8) and (1.9) contain both longitudinal and transverse 

components of U, and (Pi, and hence the separation of the non-linear waves into longitudinal 
and shear waves is fairly conventional. We will consider, however, the non-linear waves which 
are converted into longitudinal waves in the linear limit [5]. These are the equations for <p = <pl 
and u E y. For brevity we will call the waves investigated longitudinal waves. The equations for 
u and cp take the form 

pii = 2(a, +a2 +u,)u”- 2( a4 + a5 + a6 + a7 + a&“” + QU (2.3) 

pjii, = 2(2a,, +a,&“-4(al -a,)~+ Q’+’ (2.4) 

Note that the linear terms of the type u”’ which occur in the general equation (1.9) for rnicro- 
rotations, do not occur in Eq. (2.4) for the longitudinal wave. 

It can be seen that in the linear approximation (Q” = 0, Q2’ = 0, p = p,) Eqs. (2.3) and (2.4) 
are uncoupled. 

For convenience and in order to agree with [5], we will introduce the following quantities 

(2.5) 
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We will consider the problem of the evolution of a longitudinal seismic wave. Suppose that 
when t=O 

U=Ul, +=U3 =o, ‘p,=(p2=(p3=O P-6) 

The transverse components of the vector u only appear because of the non-linear 
transformation (the presence of a longitudinal component in Q”-of non-linear terms in the 
equations for u, and UJ and can therefore be regarded as small compared with u = u, and we 
can consider the mass balance in the form 

p,/p=l+u’ (2.7) 

High-frequency longitudinal waves of microrotation may manifest themselves in this system 
because of the non-linear mechanism by which energy is transferred from longitudinal micro- 
motions to microrotations-so-called long-wave-short-wave resonance [6]. Here, obviously, in 
problem (2.6) cp1%qz,(p3, since the transverse components (pz and (ps can only manifest 
themselves as a result of long-wave-short-wave resonance with small transverse components u2 
and y, and also due to non-linear transformation of the component (pl itself. 

The non-linear equations for the longitudinal waves therefore take the form 

jj - cfutf - &p” - vu’lP+ 2x(p’(p + g = 0 (2.8) 

ii, - c$p”+ o&I - U’(&’ - uL(p) + @ = 0 (2.9) 

The coefficients v and x can easily be calculated by grouping terms of the type u’u” and cpcp’ in 
Q” (see (1.14)). The sum of the remaining non-linear terms Q:, as shown below, makes no 
contribution to the effects being investigated. Similarly, by grouping terms in Qq proportional to 
u’cp (see (1.15)) we can calculate the coefficient u in (2.9) (the term QT also turns out to be 
unimportant in the problem in question). 

System (2.8), (2.9) has a clear structure. 
Equation (2.8) is an integrable Boussinesq equation, supplemented by a non-linear term which describes 

the interaction between the high-frequency and low-frequency oscillations. The term with the leading 

derivative corresponds to dispersion of the long waves. This equation can be reduced, by means of a 

standard procedure of extending the coordinates and expanding the dependent variable in a small 

parameter (see for example, [6]) to the well-known single-wave Korteweg-de Vries equation, which 
describes the long weakly dispersing displacement waves quite well, but does not take into account the 
effect of high-frequency oscillations of the microvibrators. Equation (2.9) is a linear Klein-Gordon 
equation, supplemented by bilinear components characterizing the effect of low-frequency (seismic) 
oscillations on the high-frequency (ultrasonic) waves. As we know (see, for example, [6]), the integrable 
model to which the Klein-Gordon equation leads (taking into account the non-linear terms from Q’), is a 
non-linear Schriidinger equation for the envelope of the high-frequency wave. This equation, like the 
Korteweg-de Vries equation, does not take into account the interaction between waves of different scales, 

which is of fundamental interest to us. This interaction can be described using the long-wave-short-wave 

resonance model. 

3. RESONANCE OF LONG AND SHORT WAVES 

The linear waves of system (2.8), (2.9) are characterized by the dispersion relations 

co2 = c2k2 + Sk4 s 1 

for the seismic waves (subscript s) and 

(3.1) 
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w* = c*k* + co* us 2 0 (3.2) 

for the ultrasonic waves (subscript us) (see Fig. 1). 
Suppose the ratio E = k, lk,,, of the characteristic wave numbers of the seismic and ultrasonic 

waves is small. We will represent the required variables u and cp in the form of asymptotic series 
in the parameter E, using the well-known technique of multiscale’ expansions [6] 

U&Z) = &U(l)+..., (P(x,t,5,2)=&q~(‘)+&q+1~(2)+ . . . (3.3) 

where 5 = E(X - c,t), z = &‘r are “slow” coordinates, and c* = do, ldk is the group velocity of the 
ultrasonic waves, and q >O. The derivatives a’& and &LX when introducing the new set of 
independent variables X, t; 5, z are converted as follows: 

a a a 2 a a : a +Ed 
-d--+&c --+& -, at at g ag a7 ax ax ag (3.4) 

Substituting the expansions (3.3) and (3.4) into Eq. (2.4) of the dynamics of the 
microrotation, and equating the coefficients of like powers of E to zero, we obtain a system of 
coupled equations. The first of these corresponds to the factor eq and leads to separation of the 
fast and slow variables 

‘p(l) = A((,z)e" + c.c., 0 = kx -of + 8, (3.5) 

where 8, is an arbitrary constant and A is a slowly varying complex amplitude (envelope). The 
required equation for A follows from the equation for c$$ corresponding to the order q + 2 

cp ..(3) _C;Cp'3"'+&)(3) = [cc22 -C,2)a2~ia~2 + 2ikaAl af- 

-VA(o; + k2c;)]eie + C.C.+@, V = ad’) / at (3.6) 

The quantity in square brackets gives rise to a secular increase in the approximation 
considered. The condition for this increase not to occur leads to the equation of the envelopes 

w 

Fm.1. 
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constant x. 
Introducing the new variables 

A. L. KRYLOV ef al. 

2i& + (~2’ - @As5 = (k*c; + C&VA (3.7) 

It can be seen that the non-linear terms in QT (their structure is described in (1.15)), occur in 
the higher approximation in E, and make no contribution to the secular increase in qc3). It 
should be noted that the quadratic terms in cp and QT nevertheless lead to terms of the type 
I A I’A, characterizing the self-action of the ultrasonic waves on the right-hand side of Eq. (3.7). 
Taking them into account later does not lead to any fundamental changes. Moreover, when 
investigating the interaction between waves corresponding to different branches of the 
dispersion relation, it is natural to assume that these terms are small compared with the bilinear 
term -VA considered. 

To obtain an equation for the deformation to a first approximation V(E,, z) we must also 
change to coordinates 5,~ instead of x, t in (2.8) 

(cg’ - c;)V& - 2~c& = 2~~*‘~-“lAl& -(Q:), /E* (3.8) 

It turns out that the non-linear term VU’U” and the non-local term 6~“” in the new coordinates 
are small, and they can be neglected in (3.8). In addition, when using (1.14) it can be shown that 
there are no terms in QT which might compete with those taken into account, and hence the 
term Q: can also henceforth be neglected. 

When there is no resonance (c, + c,) the second term on the left-hand side of (3.8) turns out to 
be much less than the first, so that by choosing 9 = 1 we obtain 

V = -2x(+ - c;)-1 I Al* (3.9) 

Substituting (3.9) into (3.7) we obtain a non-linear S&r&linger equation for the envelope of 
the fast field 

2&A, + (c,’ - ci)Att = -2~(k*c; +o;)(cf -c;)-~IAI* A (3.10) 

Thus, in the non-resonance situation considered the envelope of the ultrasonic wave and the 
slow (seismic) variable are rigidly connected by the algebraic relation (3.9), i.e. the lower branch 
“copies” the upper branch. 

In the case of resonance there is a certain value k* for which the following equation is 
satisfied 

c,(k’) = c, (3.11) 

i.e. the group velocity of the ultrasonic waves cB is identical with the phase velocity of long 
seismic waves: c, = CO, lk + c,(k -_) 0) (see Fig. 1). We will assume that the interaction constant x 
is of order of smallness Ed, i.e. 

x=&pc,x, p>o, X=0(1) (3.12) 

Then, choosing 4 = (3 - p) / 2, Eq. (3.8) takes the form 

VT = xl Al; (3.13) 

The value of p itself in (3.12) is determined by the actual value of the small elastic coupling 

L= p*)*C: +& I~l(6$ +(k*)*C;) 
K 

2k* ’ 
S=A 

((c,’ - c:)2k*)K 1 
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f’=T, x’=&2k*)X&c:)-X (3.14) 

we obtain a canonical long-wave-short-wave resonance system (see, for example, [6]) 

2iS, + S, = 2LS, L, = +I SlE (3.15) 

The sign in the second equation is governed by the sign of the constant x, and the primes on 
the independent variables are omitted. System (3.15) arises in different resonance situations, for 
example, when investigating the interaction between Langmuir and ionosonic waves in a plasma 
[7], and also when describing the protein o-helix [8]. Soliton solutions of the long-wave-short- 
wave resonance equations have been investigated in [9, lo]. 

To fix our ideas we will consider system (3.15) with the “minus” sign in the second equation. 
By making the replacement of variables 

s = I&iv t (Px=w (3.16) 

these equations can be reduced to a hydrodynamic-type system 

Z,+(lw),=O, L,+I,=O 

w,+[w2/2+L-~(1,/I--1,2/212)]x=o (3.17) 

The so-called dispersionless limit, which occurs for smooth “flows”, i.e. when III,+l, is of 
interest. The third of Eqs. (3.7) then takes the simpler form 

w, +(w2 /2+L), =o 

and system (3.17), (3.18) can be represented in the Riemann form 

(3.18) 

+/&+~(r)f3~/Jx=O, i=1,2,3 (3.19) 

where 4 are Riemann invariants, and V,(r) are characteristic velocities which depend on all 
three invariants, and there is no summation over repeated indices. 

The connection between the Riemann invariants and the characteristic velocities with initial 
variables I, w , and L is given by the relations 

‘;: =L+W2(~A~-1)Ai, ~=WAi (3.20) 

where Ai are the roots of the cubic equation 

A(A-1)2 =IIw3 (3.21) 

System (3.17), (3.18) and, correspondingly, (3.19) is hyperbolic, if 

0-c Ilw3 <4/2-? (3.22) 

In this case the envelope of the generated ultrasonic wave is stable, and to describe the smooth 
evolution of the required variables it is sufficient to use system (3.19) instead of the considerably 
more complex system (3.15). Thus, any 5 =const are exact solutions of (3.19), which also 
enables its analysis to be simplified considerably. 

If condition (3.22) is not satisfied, the “smooth” regime breaks up rapidly due to modulation 
instability and the leading derivatives play a role in the second equation of system (3.17). The 
envelope of the ultrasonic packet itself then begins to oscillate, which leads to decay into a 
soliton (envelope). 



1066 A. L. KRYLOV et al. 

Finally, using the resonance condition (3.11) the wavelength h* of the excited ultrasonic wave 
can be expressed in terms of the material constants as follows: 

3.’ = 2nc,<c; - cp / (C,O~) (3.23) 

In other words h* is independent of the frequency of the seismic vibrations and is propor- 
tional to the internal scale of the medium. The long-wave-short-wave resonance approximation 
will then work more accurately the more rigorously the following inequality is satisfied 

where h, is the wavelength of the action, and 

The last condition follows from the linear dispersion relation (3.1) and denotes that the most 
effective resonance is obtained in the linear-dispersion region. 

For the replacement (3.14) to be correct it is necessary for the inequality c, > c, to be satisfied. 
The ratio of the phase velocities of the excited ultrasound and of the seismic wave then satisfies 
the relation 

c,/c, =c*Ic, >I 

which agrees with experiment [2]. 
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